Ultra-Low-Power Digital Design with Body Biasing for Low Area and Performance-Efficient Operation

نویسندگان

  • Maurice Meijer
  • José Pineda de Gyvez
  • Ajay Kapoor
چکیده

We present a design methodology towards minimum-area maximum-performance designs in sub-/ near-threshold operation. Our methodology is based on a new metric called performance-per-area. Unlike conventional gate sizing, we use forward body biasing at synthesis time to render faster, smaller and more energy-efficient circuits. Our theory introduces body biasing into delay and energy models in the form of nonlinear derating functions that can easily be fitted to a technology node. The methodology is validated using an industrial microprocessor consisting of approximately 31 K gates and 3.7 K flip-flops in CMOS 90 nm. We obtain 4.2x better EDP, 3.8x higher speed and 9% smaller area than the non-body-biased counterpart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts

In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...

متن کامل

A Low-Voltage Single-Supply Level Converter for Sub-VTH /Super-VTH Operation: 0.3V to 1.2V

Digital sub-threshold circuits are significant for ultra-low power (ULP) applications. Operating circuits at ultra-low voltage levels leads to the less power per operation. An optimized method is separating the logic blocks based on performance requirement and utilizing multiple-supply voltage (VDD) for each blocks. In order to prevent an enormous static current in these multi-VDD circuits, vol...

متن کامل

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

The Effect of DTMOS Transistors on the Performance of a Memristor-based Ternary CAM Cell in Low Power Applications

This paper proposes the use of DTMOS transistors in a memristor-based ternary CAM (MTCAM) instead of MOSFET transistors. It also evaluates the effect of forward body biasing methods in DTMOS transistors on the performance of a MTCAM cell in write mode. These biasing methods are gate-to-body tying (called DT1), drain-to-body tying (called DT2), and gate-to-body tying with a voltage supply of 0.1...

متن کامل

Sub-threshold Circuit Design Techniques for Ultra Low-Power Logic

With CMOS technology being scaled to ever smaller dimensions to achieve higher performance and integration levels, power dissipation has become a major concern in modern VLSI designs. Sub-threshold circuits have gained a lot of importance due to ultra low-power consumption. The paper reviews the sub-threshold circuit design. Various body-biasing schemes and logic families for performance enhanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Low Power Electronics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010